

Definifions

dB	Difference (or ratio) between two signal levels. Generally used used to describe the effect of system devices on signal strength.
dBi	A signal strength level. 0 dBm is defined as 1 mW of power. Small signals are negative numbers. (e.g. $-83 \mathrm{dBm})$
	The gain of an antenna relative to an isotropic radiator. Used in calculating ERP and range. NOTE: $\mathrm{dB}, \mathrm{dBm}$ and dBi are used because systems' powers, gains and losses can be calculated by simply adding and subtracting.
ERP	Effective Radiated Power, equal to the antenna gain added to the power into that antenna. (Technically, called EIRP.)

din vo. Walts

0	1.0 mW
1	1.3 mW
2	1.6 mW
3	2.0 mW
6	4.0 mW
10	10.0 mW
15	32.0 mW
20	100 mW
30	1 Watt
33	2 Watts
36	4 Watts
40	10 Watts
50	100 Watts
60	1000 Watts

Coaxial Cabling Terms

Coaxial Cabling is a two conductor closed transmission medium that is primarily used for the transmission of Radio Frequency energy. The system offers tight control over electrical impedance. This yields excellent performance at high frequencies and superior EMI control/shielding. Coaxial cabling is commonly found in test environments as well as in broadcast, video and networking systems. Listed below are some common terms and definitions that are related to coaxial cabling:
Attenuation (Insertion Loss): Loss of power. Attenuation is usually measured in dB loss per length of cable (ex. $31.0 \mathrm{~dB} / 100 \mathrm{Ft}$.). Attenuation increases as frequency increases.
Center Conductor: The solid or stranded wire in the middle of the coaxial cable. The conductor diameter is measured by the American Wire Gauge (AWG).
Coaxial Adapter: A device used to change one connector type to another or one gender to another (ex. BNC to SMA Adapter).
Coaxial Cable: A two conductor cylindrical transmission line typically comprised of a center conductor, an insulating dielectric material and an outer conductor (shielding). Coaxial cable can be flexible (typical to the assemblies found in this catalog), semirigid or rigid in nature.
Coaxial Connector: The interconnection device found at each end of a coaxial cable assembly. There are many common types of coaxial connectors such as: BNC, SMA, SMB, F, etc.
Dielectric: The insulating material that separates the center conductor and the shielding.
Electromagnetic Interference (EMI): Electrical or electro-magnetic energy that disrupts electrical signals. Frequency: The number of times a periodic action occurs in one second. Measured in Hertz.
Impedance: The opposition to the flow of alternating or varying current. Measured in Ohms. Two common impedance values are 50 Ohms used primarily for data and 75 Ohms used to transmit video signals.
Jack: The female connector usually containing a center socket.
Plug: The male connector usually containing a center pin.
RF (Radio Frequency): A frequency band from 3 MHz to 3 GHz . Primarily used for transmission of radio and television signals.
RG/U: Symbols used to represent coaxial cable that is built to U.S. government specifications ($\mathrm{R}=$ Radio Frequency, $\mathrm{G}=\mathrm{Government}$, $\mathrm{U}=$ Universal Specification). Shielding: Conductive envelope made of wires or metal foil that covers the dielectric and the center conductor.
Twinaxial: An offshoot from coaxial cabling. Two center conductors with one dielectric and braided shielding.
VSWR (Voltage Standing Wave Ratio): The ratio of the maximum effective voltage to the minimum effective voltage measured along a RF transmission line. This value generally increases with frequency and higher values are not desirable.

Plugs are considered male gendered connectors which utilize a center pin. Jacks are considered female gendered connectors utilizing a center socket.

A PLUG utilizes a center pin = MALE GENDER

A JACK utilizes a center
socket = FEMALE GENDER

Frequency Band Data
Coxial products listed in this section are generally intended for use in the RF frequency band as illustrated here.

Typical Coaxial Cabling (Exploded View):

Insulating material isolates shield from center conductor. This also gives the cable its impedance property.

Typical Coaxial Connector (BNC Exploded View):

Ferule:

Provides mating surface for coaxial shielding.

Crimp Sleeve: Provides strain relief by securing braid to connector.

Connector (Plug) Body Nickel plated brass
is typical.
Center Pin:
Terminates to center conductor
via cimping or soldering.

Connector Interface Frequency Chart

SMA
18 GHz

This chart illustrates the upper frequency limit of various interface types only.
Actual frequency limits of cable assemblies are dependent on various other factors.

Understanding Shielding Effectiveness

Shielding Effectiveness is the relative ability of a shield to screen out undesirable interference. In the case of a coaxial cable, the outer conductor provides a shield to keep interfering signals from getting in and to keep signal from leaking out to become undesirable interference for nearby devices. Shielding Effectiveness is measured in dB with higher values indicating better shielding properties.

The table below illustrates the relative shielding properties of various shielding types. Notice as the shielding density increases there is a correlated increase in the shielding effectiveness value. The best shielding effectiveness value can be found in a rigid coaxial cable due to the solid tube construction of the outer jacket. In this type of cable the limiting factor for shielding effectiveness is the quality of the connector attachment.

1.0 SCOPE: This document establishes the specifications for a flexible coaxial cable specifically designed to perform in any application requiring an easily routed, low loss RF cable.
2.0 REQUIREMENTS: This document contains test values for all import mechanical and electrical parameters, and as such, is the basis for all incoming inspection and acceptance.
3.0 DIMENSIONS:
3.1 Center conductor: 0.108 in , (2.74 mm) BCCAL
3.2 Dielectric: Foam polyethylene 0.285 in . (7.24 mm)
3.3 Outer conductor: Aluminum tape 0.291 in . (7.39 mm)
3.4 Overall braid: Tinned copper 0.320 in . (8.13 mm)
3.5 Jacket: Black polyethylene 0.405 in . (10.29 mm)
4.0 MECHANICAL SPECIFICATIONS:
4.1 Min Bending Radius: 1.0 in . $\quad 25.4 \mathrm{~mm}$
4.2 Bending: $\quad 0.5 \mathrm{ft} \mathrm{lbs} \quad 0.68 \mathrm{~N}-\mathrm{m}$
4.3 Weight: $\quad 0.068 \mathrm{lbs} / \mathrm{ft} \quad 0.10 \mathrm{kG} / \mathrm{m}$
$4.4 \quad$ Tensile strength $\quad 160 \mathrm{lbs} \quad 72.6 \mathrm{kG}$
$4.5 \quad$ Flat plate crush $\quad 40 \mathrm{lb} / \mathrm{in} \quad 0.71 \mathrm{~g} / \mathrm{mm}$
5.0 ELECTRICAL SPECIFICATIONS:
5.1 Cutoff frequency: 18.2 GHz
5.2 Velocity of propagation: 85\%
5.3 Voltage withstand: 2500 VDO
5.4 Peak power: 16 kW
5.5 DC Resistance:
5.5.1 Innder conductor, ohms: $1.02 / 1000 \mathrm{ft}(4.56 \mathrm{~km})$
5.5.2 Outer conductor, ohms: $185 / 1000 \mathrm{ft}(5.41 \mathrm{~km})$
5.6 Capacitance: $23.9 \mathrm{pF} / \mathrm{ff}(78.40 \mathrm{pF} / \mathrm{m})$
5.7 Inductance: $0.060 \mathrm{uH} / \mathrm{ft}(0.20 \mathrm{uH} / \mathrm{m})$
5.8 Jacket spark: 8000 VRMS
5.9 Shielding effectiveness: $>90 \mathrm{~dB}$
5.10 Phase stability: $<10 \mathrm{ppm} /$ degrees C
6.0 ENVIRONMENTAL SPECIFICATIONS:
6.1 Installation temperature range: $-40 /+185 \mathrm{~F}(-40 /+85 \mathrm{C})$
6.2 Storage temperature range: $-94 /+185 \mathrm{~F}(-70 /+85 \mathrm{C})$
6.3 Operating temperature range: $-40 /+185 \mathrm{~F}(-40 /+85 \mathrm{C})$

Frequency (MHz)	Attenuation dB/100ft	Attenuation dB/100m	Avg Power kW
30	0.7	2.2	3.3
150	1.5	5.0	1.5
450	2.7	8.9	0.83
1500	5.1	16.8	0.44
2000	6.0	19.6	0.37
2500	6.8	22.2	0.33

Kouenber s!xe jeyuoziou oul pue

